iPSCs-BBB研究所

iPSCs-BBB研究所

メニュー

原著論文

2025

2024

2023

2022

  • McCloskey MC, Kasap P, Ahmad SD, Su SH, Chen K, Mansouri M, Ramesh N, Nishihara H, Belyaev Y, Abhyankar VV, Begolo S, Singer BH, Webb KF, Kurabayashi K, Flax J, Waugh RE, Engelhardt B, McGrath JL .The Modular µSiM: a Mass Produced, Rapidly Assembled, and Reconfigurable Platform for the Study of Barrier Tissue Models In Vitro. Adv Healthc Mater. 2022. https://onlinelibrary.wiley.com/doi/10.1002/adhm.202200804
  • Nishihara H, Perriot S, Gastfriend B. D, Steinfort M, Cibien C, Soldati S, Matsuo K, Guimbal S, Mathias A, Palecek S. P, Shusta E, Du Pasquier R, Engelhardt B. Intrinsic blood-brain barrier dysfunction contributes to multiple sclerosis pathogenesis. Brain 2022. https://academic.oup.com/brain/article/145/12/4334/6516047 EDITOR’S CHOICE, Podcast https://academic.oup.com/brain/pages/podcast

2021

  • Nishihara H, Gastfriend B. D, Kasap P, Palecek S. P, Shusta E. V, Engelhardt B. Differentiation of human induced pluripotent stem cells into brain microvascular endothelial cell-like cells suitable to model immune cell interactions with the blood-brain barrier. STAR Protoc. 2021. https://www.sciencedirect.com/science/article/pii/S2666166721002707
  • Gastfriend BD, Nishihara H, Foreman KL, Engelhardt B, Palecek SP, Shusta EV. Wnt mediates acquisition of barrier properties in naïve endothelium derived from human pluripotent stem cells. Elife. 2021 https://elifesciences.org/articles/70992

2020

  • Nishihara H, Soldati S, Mossu A, Rosito M, Rudolph H, Muller WA, Latorre D, Sallusto F, Sospedra M, Martin R, Ishikawa H, Tenenbaum T, Schroten H, Gosselet F, Engelhardt B. Human CD4+ T cell subsets differ in their abilities to cross endothelial and epithelial brain barriers in vitro. Fluids Barriers CNS. 2020 https://fluidsbarrierscns.biomedcentral.com/articles/10.1186/s12987-019-0165-2
  • Nishihara H., Gastfriend B. D, Soldati S, Perriot S, Mathias A, Sano Y, Shimizu F, Gosselet F, Kanda T, Palecek S. P, Du Pasquier R, Shusta E. V, Engelhardt B. Advancing human induced pluripotent stem cell-derived blood-brain barrier models for studying immune cell interactions. FASEB J . 2020. https://faseb.onlinelibrary.wiley.com/doi/full/10.1096/fj.202001507RR

2019

  • Mossu A, Rosito M, Khire T, Chung H, Nishihara H, Gruber I, Luke E, Dehouck L, Sallusto F, Gosselet F, McGrath J, Engelhardt B. A silicon nanomembrane platform for the visualizeation of immune cell trafficking across the human blood-brain barrier under flow. J Cereb Blood Flow Metab. 2019 https://journals.sagepub.com/doi/full/10.1177/0271678X18820584
  • Shimizu F, Oishi M, Sawai S, Beppu M, Misawa S, Matsui N, Miyashiro A, Maeda T, Takeshita Y, Nishihara H, Sano Y, Kaji R, Kuwabara S, Kanda T. Increased IP-10 production by blood-nerve barrier in multifocal acquired demyelinating sensory and motor neuropathy and multifocal motor neuropathy. J Neurol Neurosurg Psychiatry . 2019.
  • Wimmer I, Tietz S, Nishihara H, Deutsch U, Sallusto F, Gosselet F, Lyck R, Muller WA, Lassmann H, Engelhardt B. PECAM-1 stabilizes blood-brain barrier integrity and favors paracellular T-cell diapedesis across the blood-brain barrier during neuroinflammation. Front Immunol. 2019. https://www.frontiersin.org/journals/immunology/articles/10.3389/fimmu.2019.00711/full
  • Shimizu F, Takeshita Y, Sano Y, Hamamoto Y, Shiraishi H, Sato T, Yoshimura S, Maeda T, Fujikawa S, Nishihara H, Kitanosono H, Tsujino A, Motomura M, Kanda T. GRP78 antibodies damage the blood-brain barrier and relate to cerebellar degeneration in Lambert-Eaton myasthenic syndrome. Brain. 2019. https://academic.oup.com/brain/article/142/8/2253/5522535
  • Shimizu F, Takeshita Y, Hamamoto Y, Nishihara H, Sano Y, Honda M, Sato R, Maeda T, Takahashi T, Fujikawa S, Kanda T. GRP 78 antibodies are associated with clinical phenotype in neuromyelitis optica. Ann Clin Transl Neurol. 2019 https://onlinelibrary.wiley.com/doi/10.1002/acn3.50905